

Date:

Jun 24, 2025

Applicant: SLAPPYS SOURCING SERVICES LIMITED

3/F, NO.41, HUANHU BEI ROAD, SHATIAN TOWN,

DONGGUAN CITY, GUANDONG

Attn: Kendy Yu

Sample Description:

The submitted sample said to be:

Item Name

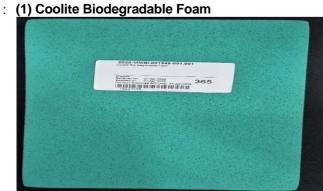


Figure 1: Coolite Bio Degradable Foam

Tests conducted:

As requested by the applicant, refer to attached page(s) for details.

Authorized by:

Tim Lee

Technical Manager For Intertek China

Tel:+86755 26020111

www.intertek.com.cn

www.intertek.com

Tests Conducted

1 PROJECT DESCRIPTION

Coolite Bio Degradable Foam sample was submitted for testing under standard ASTM D5511. This test method covers the determination of the degree and rate of anaerobic biodegradation of plastic materials in high-solids anaerobic conditions. The test materials are exposed to a methanogenic inoculum derived from anaerobic digesters operating only on pretreated household waste. The anaerobic decomposition takes place under high-solids (more than 30 % total solids) and static nonmixed conditions. This test method is designed to yield a percentage of conversion of carbon in the sample to carbon in the gaseous form under conditions found in high-solids anaerobic digesters, treating municipal solid waste.

2 INOCULUM COLLECTION AND CONDITIONING

The anaerobic digested sewage sludge (Figure 2) mixed with household waste. To make the sludge adapted and stabilized during a short post-fermentation at 53°C, the sludge was pre-incubated (one week) at 53°C. This means that the concentrated inoculum was not fed but allowed to post ferment the remains of previously added organics allowing large easily biodegradable particles were degraded during this period and reduce the background level of biogas from the inoculums itself.

Figure 2: Anaerobic microbial inoculum

3 **INOCULUM PROPERTIES**

Intertek Testing Services Shenzhen Ltd.

深圳天祥质量技术服务有限公司

A sample of the anaerobic digested sewage sludge was analyzed for pH, percent dry solids, and volatile solids, as well as, the amount of CO2 and CH4 evolution during the testing. Table 1 lists the results of this initial testing.

(to be continued)

Tel:+86755 26020111 www.intertek.com

www.intertek.com.cn

Tests Conducted

4 METHODOLOGY:

Test Method: ASTM D5511 Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions

Inoculum Medium: Remove enough inoculum (approximately 15 kg) from the post-fermentation vessel and mix carefully and consistently by hand in order to obtain a homogeneous medium. Test three replicates each of a blank (inoculum only), Positive control (Reference material) (thin-layer chromatography cellulose), negative control (optional), and the test substance being evaluated.

Manually mix 1000 g wet weight (at least 20 % dry solids) of inoculum in a small container for a period of 2 to 3 min with 15 to 100 g of volatile solids of the test substance or the controls for each replicate. For the three blanks containing inoculum only, manually mix 1000 g of the same inoculum in a small container for a period of 2 to 3 min with the same intensity as was done for the other vessels containing test substance or controls. Determine the weight of the inoculum and test substance added to each individual Erlenmeyer flask accurately. Add the mixtures to a 2-L widemouth Erlenmeyer flask and gently spread and compact the material evenly in the flask to a uniform density.

After placing the Erlenmeyer flask in incubator, connect it with the gas collection device. Incubate the Erlenmeyer flasks in the dark or in diffused light at 52°C (± 2°C) for thermophilic conditions, The incubation time shall be run until no net gas production is noted for at least five days from both the Positive control (Reference material) and test substance reactors. Control the pH of the water used to measure biogas production to less than two by adding HCI.

5 ANAEROBIC DIGESTER SETUP FOR THE PLASTIC BIODEGRADATION

The biodegradation testing of sample was performed in the digester as shown in the (Figure-3).

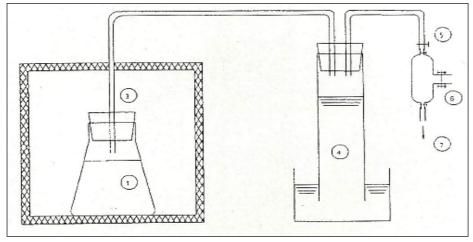


Figure-3: Digester setup

- Digester
- 2. Incubator
- 3. Gas outlet
- 4. Gas collector
- 5. Valve
- 6. Gas Sampling
- 7. Gas Discharge

Tests Conducted

6 RESULT:

The most important biochemical characteristics of the inoculum such as pH, Volatile Fatty Acids, NH4+-N— and dry solids were studied.

Table 1: Results of Initial testing of the anaerobic digested sewage sludge.

	<u> </u>	•
Parameters	Requirement	Actual results
рН	7.5 to 8.5	7.59
Kjeldahl nitrogen	0.5 to 2 g/kg wet weight	1.43
Dry Solids at 105 °C	>20%	44.00
Volatile Solids at 550 ° C	Below 1 g/kg wet weight	0.74

The biogas volume in the gas sampling bag was measured (Table- 2). Presence of gas in the gas collector of Positive control (Reference material) indicated that the inoculum was viable and gas displacement was observed both in Positive control (Reference material) and Test Sample.

ASTM D 5511 states that for the test to be considered valid, the Positive control (Reference material) must achieve 70 % within 30 days with deviation less than 20% of the mean between the replicates.

Positive control (Reference material) showed 70.44 % on 27th day with less than 20% of the mean difference between the replicates.

The gas displacement observed after 45 days is as shown in the table below.

Table-2: Biogas volume of the evolved gas during the biodegradation process at 45 days

Biodegradation Test	Total Volume 45 days (mL)
Inoculum	2500
Positive control (Reference material)	9880
Coolite Bio Degradable Foam	4490

Colonization of bacteria at some places were observed under the microscope (Fig-4). This shows the process of biodegradation has begun.

Tests Conducted

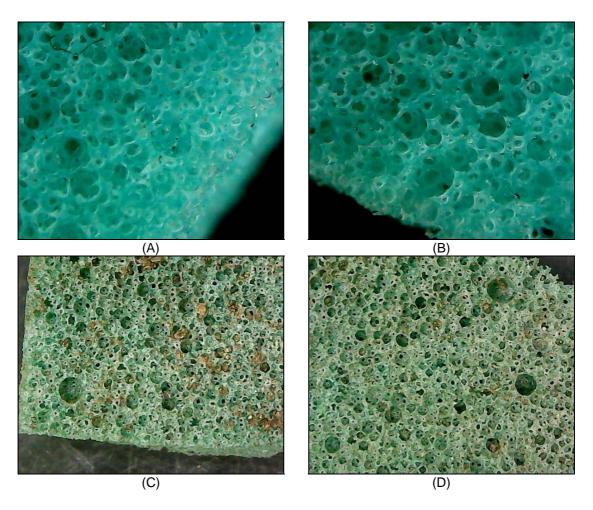


Figure 4: Microscopic image of Test samples Before and After 45 days Incubation Condition

A & B – Unexposed Test Coolite Bio Degradable Foam to anaerobic biodegradation process C & D – Exposed Test Coolite Bio Degradable Foam to anaerobic biodegradation process

The percent biodegradation of Positive control (Reference material) and Test sample was calculated by the measured cumulative carbon dioxide and methane production from each flask after subtracting carbon dioxide evolution and methane evolution from the blank samples at the end of 45 days of testing. Calculations were based on Total Organic Carbon obtained of both Positive control (Reference material) and Test sample.

Tests Conducted

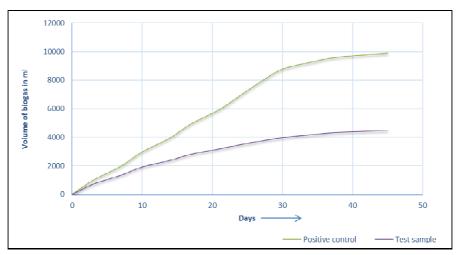
Table-3: Percentage biodegradability of Test sample with reference to the Positive control (Reference material) Cellulose.

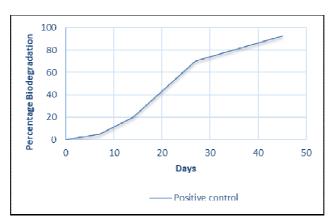
Group	Inoculum control	Positive control (Reference material)	Coolite Bio Degradable Foam Sample
Weight	1000 ml	10.2483 g	10.2127 g
Total volume (ml)	2500.00	9880.00	4490.00
% CH ₄	13.60	42.80	17.10
Volume of CH ₄ (ml)	340.00	4228.64	767.79
weight of CH ₄ (g)	0.2230	2.7740	0.5037
% CO ₂	14.90	43.10	19.20
Volume of CO ₂ (ml)	372.50	4258.28	862.08
Weight of CO ₂ (g)	0.7376	8.4314	1.7069
Total weight of carbon in grams	0.3664	4.3570	0.8386
Theoretical weight of carbon in grams (Ci)	-	4.3115	6.2103
Biodegradation	-	0.92557	0.07603
% Biodegradation	-	92.56	7.60

Table 4: Percent weight loss of Coolite Bio Degradable Foam sample.

Average Initial Weight (grams)	10.2127 g	
Average Final Weight (grams)	10.0653 g	
Percent Weight Loss (%)	1.44 %	

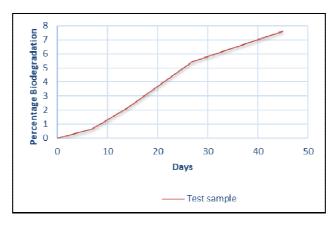
The Percent weight loss was calculated based on the initial weight and final weight of the test sample after the 45 days study.


Biodegradation of the samples determined based on conversion of carbon from the test material to carbon in the gaseous phase (CH_4 and CO_2) can be observed in graph 1 and graph 2a & 2b.



Tests Conducted

Graph-1: Plot showing Net Biogas Production from Test sample (Coolite Bio Degradable Foam) and Positive control (Reference material- Cellulose)


Graph-2a: The percent biodegradation of the Positive control (Reference material- Cellulose) determined based on conversion of carbon from cellulose to carbon in the gaseous phase $(CH_4 \text{ and } CO_2)$

Tests Conducted

Graph-2b: The percent biodegradation of the Test sample (Coolite Bio Degradable Foam Sample) determined based on conversion of carbon from the Test material to carbon in the gaseous phase (CH₄ and CO₂)

7 INTERPRETATION:

Considering the cumulative gas production as observed in Table 2 & 3 and its analysis indicates that the process of biodegradation has occurred in Coolite Bio Degradable Foam Sample. After 45 days of incubation, the level of biodegradation for the Positive control (Reference material) was 92.56 % while the Coolite Bio Degradable Foam sample submitted showed 7.60 %.

End of report

This report was finished by Intertek and Subcontractor. The statements of conformity reported have considered the decision rule agreed, namely that Intertek have taken account of measurement uncertainty as calculated by Intertek, and applied according to ILAC-G8:09/2019-(Non-binary acceptance based on guard band $\mathbf{w} = \mathbf{U}$) except designation from the customer, regulation or test specification. This decision rule only applies to the numeric test results. Full details of our agreed decision rules and the associated risk can be viewed: https://www.intertek.com.cn/diypage/upload/SZ-AP15-HLS-QA.pdf.

The sample(s) and sample information hereto are provided by the client who shall be solely responsible for the authenticity and integrity thereof. The results shown in this report relate only to the sample(s) received and tested. It is not intended to be a recommendation for any particular course of action. Intertek does not accept a duty of care or any other responsibility to any person other than the Client in respect of this report and only accepts liability to the Client insofar as is expressly contained in the terms and conditions governing Intertek's provision of services to you. Intertek makes no warranties or representations either express or implied with respect to this report save as provided for in those terms and conditions. We have aimed to conduct the review on a diligent and careful basis and we do not accept any liability to you for any loss arising out of or in connection with this report, in contract, tort, by statute or otherwise, except in the event of our gross negligence or wilful misconduct. This report shall not be reproduced unless with prior written approval from Intertek.

